
MIPS Assembly Language
Prof. James L. Frankel

Harvard University

Version of 6:28 PM 1-Oct-2024
Copyright © 2024, 2021, 2020, 2018, 2015 James L. Frankel. All rights reserved.

Assembler Input

• The assembly language file should have “.s” as its file name extension

• Input contains one instruction or directive per line
• Assembly Language instructions
• Pseudo-instructions
• Assembler directives
• Lines may be prefixed by a label followed by a colon
• Comments

• Comments begin with a pound-sign (#) and continue through the end of the line

• SPIM includes minimal input and output system call facilities using
the syscall instruction

2

Usual Assembler Input Format

• If a label is present, it begins in column one and ends with a colon

• Instruction opcodes, pseudo-instruction opcodes, and assembler
directives are preceded by a tab (so that they are aligned) and follow
a possible label

• If an opcode or directive has any operands, then the opcode or
directive is followed by a tab so that the operands are aligned

• Comments may be on lines by themselves or may follow instructions
or directives
• If the comments follow instructions or directives, they are preceded by tabs

so that they are aligned

3

Pseudo-Instructions

• Pseudo-instructions look like real instructions, but extend the
hardware instruction set

• Each pseudo-instruction is translated into one or more real assembly
language instructions

• The assembler may use register $at in generating code for pseudo-
assembly language instructions

• In the documentation included with SPIM (at
http://www.cs.wisc.edu/~larus/SPIM/spim_documentation.pdf), all
pseudo-assembly language instructions are tagged with a dagger (†)

4

http://www.cs.wisc.edu/~larus/SPIM/spim_documentation.pdf

Examples of Pseudo-Instructions

• Absolute value: abs rdest, rsrc

• Bitwise logical NOT: not rdest, rsrc

• Load immediate: li rdest, immediate

• Set on equal: seq rdest, rsrc1, rsrc2
 seq rdest, rsrc, immediate

• Unconditional branch: b label

• Load address: la rdest, label

• Copy contents of register: move rdest, rsrc

5

Assembler Directives

• Directives tell the assembler how to function

• Groups of directives
• In which segment should following code or data be placed

• Externally visible labels

• Reserve space for data
• Possibly initialize the values of data

6

Assembler Segment Directives

• .text
• Anything that follows is placed in the text segment
• The text segment is where executable code exists
• .text may be followed by an address

• Anything that follows is placed in the text segment beginning at the specified address

• In SPIM, the text segment may contain only instructions or .word’s

• .data
• Anything that follows is placed in the data segment
• The data segment is where static data stored in memory exists
• .data may be followed by an address

• Anything that follows is placed in the data segment beginning at the specified address

7

Externally Visible Label Directive

• .globl label
• The specified label is made visible to other files

• The label must be declared within the current file

• Each executable unit must have the label main declared and made
externally-visible

8

Assembler Data Value Directives

• .word w1, w2, …
• The value of each operand (w1, w2, etc.) is stored in a 32-bit word in memory

• The words are aligned on word boundaries

• .half h1, h2, …
• The value of each operand (h1, h2, etc.) is stored in a 16-bit halfword in

memory

• The halfwords are aligned on halfword boundaries

• .byte b1, b2, …
• The value of each operand (b1, b2, etc.) is stored in a 8-bit byte in memory

• No alignment is performed

9

Assembler String Value Directives

• .ascii "string"
• The "string" is stored in memory using ASCII values

• Each character is stored in an 8-bit byte

• No alignment is performed

• .asciiz "string"
• The "string" is stored in memory using ASCII values with null-termination

• Each character is stored in an 8-bit byte

• No alignment is performed

10

Assembler Data Space Directive

• .space n
• Reserve n uninitialized bytes of space in memory

• No alignment is performed

11

Reserving Memory for Global/Static Data

• Space for global/static variables is reserved in the .data segment
• Space may be reserved using the .word, .half, .byte, .ascii, .asciiz, and .space

directives

• In the C Programming Language, static variables are initialized to zero
• Therefore, storage for all static variables should be reserved using the .word,
.half, and .byte directives with an initial value of zero

• In the C Programming Language, literal strings are always null
terminated
• Therefore, storage for literal strings should be reserved using the .asciiz

directive

12

Minimal Input/Output and Other System Calls

• print_int

• print_string

• read_int

• read_string

• exit

13

print_int System Call

.text
 .globl main

main: li $v0, 1 # $v0 <- system call code for print_int
 li $a0, 42 # $a0 <- value of integer to be printed
 syscall # output the integer

14

print_string System Call

.data

hello: .asciiz "Hello world\n"

 .text
 .globl main

main: li $v0, 4 # $v0 <- system call code for print_string
 la $a0, hello # $a0 -> the greeting string
 syscall # output the greeting string

15

read_int System Call

.text
 .globl main

main: li $v0, 5 # $v0 <- system call code for read_int
 syscall # $v0 <- input integer

• read_int reads a complete line including the newline character and
returns the value of an integer in register $v0

• Characters following the integer are consumed and ignored

16

read_string System Call

.data

buffer: .space 256

 .text
 .globl main

main: li $v0, 8 # $v0 <- system call code for read_string
 la $a0, buffer # $a0 -> input string buffer
 li $a1, 256 # $a1 <- buffer length
 syscall # read a null-terminated string into buffer

• Semantics are same as for Unix/Posix fgets()

17

exit System Call

.text
 .globl main

main: li $v0, 10 # $v0 <- system call code for exit
 syscall # exit from the program

18

Using SPIM

• SPIM is already installed on the cscie93.dce.harvard.edu instance
• You can also install a version of QtSpim on a Microsoft Windows, Apple Mac OS X, or Linux computer
• See https://sourceforge.net/projects/spimsimulator/files/

• Invoke SPIM from the shell by entering “spim”

• At the “(spim) ” prompt, load your code by entering

 load “filename.s”

• Run program to completing by entering

 run

• Run a single instruction by entering

 step

• Run a program from the current location to completion without pausing by entering

 continue

• Leave SPIM by entering

 exit

• The previous SPIM command can be repeated by typing simply the Enter key

19

https://sourceforge.net/projects/spimsimulator/files/

Stepping a Program Under SPIM

• After entering a “step” command to SPIM, the MIPS instruction that
has just completed is displayed

• Here is an example of SPIM instruction display

 [0x00400024] 0x34080061 ori $8, $0, 97 ; 6: li $t0,97

• “[0x00400024]” is the address of the instruction that just completed

• “0x34080061” is the value of the instruction word

• “ori $8, $0, 97” is the disassembly of the instruction

• “; 6: li $t0,97” is the assembly language input to SPIM added as a
comment with its line number in the source file

20

Displaying Instructions and Data in SPIM

• At the “(spim) ” prompt, display all registers by entering

 print_all_regs
 print_all_regs hex

• Display the value of one register by entering

 print $n
 print $sn

• Display the contents of memory by entering

 print address (such as: print 0x10010000)
 print label (such as: print main)

 To be able to use a label in SPIM, it must be declared as a global symbol

• Display all labels by entering

 print_symbols

21

Additional SPIM Commands

• Clear all registers and memory by entering

 reinitialize

• A breakpoint is a point in the program where execution will pause when
running instructions following a “run” or “continue” command
• Execution will pause before the instruction at the breakpoint

• Set a breakpoint at an address or label by entering

 breakpoint address
 breakpoint label

• Display all breakpoints by entering

 list

22

Passing Command-Line Arguments to a MIPS
Program Running Under SPIM
• See argcargv.s at on the class website for a program that prints out argc

and each argv string
• To pass arguments using command-line version of SPIM:

• spim "" argcargv.s a b c d

• To pass arguments using QtSpim:
• (1) First start up qtspim
• (2) Load the .s file to be run
• (3) Under "Simulator", click on "Run Parameters" and enter the parameters in the

"Command-line arguments to pass to program" text box
• (4) Run the program

• Note: qtspim does not do the correct parsing into separate parameters if directories
include spaces!

23

https://cscie95.dce.harvard.edu/fall2023/mips-code/argcargv.s

	Slide 1: MIPS Assembly Language
	Slide 2: Assembler Input
	Slide 3: Usual Assembler Input Format
	Slide 4: Pseudo-Instructions
	Slide 5: Examples of Pseudo-Instructions
	Slide 6: Assembler Directives
	Slide 7: Assembler Segment Directives
	Slide 8: Externally Visible Label Directive
	Slide 9: Assembler Data Value Directives
	Slide 10: Assembler String Value Directives
	Slide 11: Assembler Data Space Directive
	Slide 12: Reserving Memory for Global/Static Data
	Slide 13: Minimal Input/Output and Other System Calls
	Slide 14: print_int System Call
	Slide 15: print_string System Call
	Slide 16: read_int System Call
	Slide 17: read_string System Call
	Slide 18: exit System Call
	Slide 19: Using SPIM
	Slide 20: Stepping a Program Under SPIM
	Slide 21: Displaying Instructions and Data in SPIM
	Slide 22: Additional SPIM Commands
	Slide 23: Passing Command-Line Arguments to a MIPS Program Running Under SPIM

